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Dilute-Gas Properties of the Monatomic Gases and
Their Mixtures from the MSK Potential
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The three-parameter MSK potential is used to calculate the dilute-gas proper-
ties of the monatomic gases and their mixtures. The parameters are fitted to
data of the second virial coefficient and the Joule-Thomson coefficient; the
calculations of all other thermophysical properties are predictions. For mixtures,
universal combination rules for the potential parameters are used. It is shown
that a consistent representation of the gas data of the monatomic systems is
possible.
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1. INTRODUCTION

In a recent publication [1], we proposed a new pair potential for gaseous
and liquid argon. It is based on the Maitland—Smith form [2], extended by
a spherical hard core in the spirit of Kihara [3] and, therefore, referred to
as the MSK potential. When determining the three adjustable parameters
of this potential from a consistent set of data for the second virial coef-
ficient and the Joule-Thomson coefficient, it was possible to predict the
dilute-gas viscosity and, after adding three-body dispersion forces, the third
virial coefficient of argon essentially within their experimental inaccuracy
[1]. In view of this remarkable success for argon, it was decided to apply
the new MSK potential to other monatomic gases as well. In this paper, we
report the results for the dilute-gas properties of the monatomic gases and
their mixtures. The purpose is to show that using an adequate potential
model with only three parameters permits the prediction of some ther-
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Fig. 1. Deviation plot of experimental second virial coefficients for
helium, neon, krypton, and xenon. Data: Ne recommended values of
Dymond and Smith [8]; He, Kr, and Xe [9].
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mophysical properties from others, while the addition of some simple and

universal mixing rules yields acceptable predictions of mixture properties
from those of pure components.

2. POTENTIAL MODEL FOR LIKE AND UNLIKE INTERACTIONS
The MSK potential has the following form:

¢(r):ni68[(rrm—_dd>n_ni6<r:——dd>6] (1)

with

n=12+5<rL—ri—l> )

It contains three adjustable parameters, i.e., the depth of the potential ¢, the
associated distance between the atoms r,, and the hard spherical core
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Fig. 2. Deviation plot of experimental Joule-Thomson coefficients for
neon. Data: Ne [10, 11].
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Fig. 3. Percentége deviation plot of experimental dilute gas viscosity

coefficients of helium, neon, krypton, and xenon compared to
theoretical values. Data: Ne and Kr [12]; He and XE [13].,
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Fig. 4. Percentage deviation plot of experimental self-diffusion
coefficients of neon, argon, krypton, and xenon. Data: Ne [147];
Ar (A) [15], (@) [16], (O) [17], (O) [18] [Note: The data from
Ref. 18 are relative to D at 298.15K. We correlated the other
experimental  self-diffusion coefficients and used the value
D (T=29815K)=0.183cm?-s~! for this reference point]; Kr
[19]; Xe [201].
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Fig. 5. Experimental and theoretical thermal diffusion
factors for neon.
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Fig. 6. Experimental and theoretical thermal diffusion
factors for argon.
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diameter 4. It has been suggested [4] to use a consistent set of data for the
second virial coefficient and the Joule-Thomson coefficient to determine
the parameters of a pair potential. We have followed this suggestion in
Ref. 1 for argon with very good results. In this paper, we determined the
parameters for neon by the same manner. For krypton, xenon, and helium
no Joule-Thomson coefficients were available, so we used the dilute-gas
viscosity instead.

Since we wish to predict the properties of the gas mixtures, we need
combination rules for the potential parameters. For saﬁagﬁ Wwe use a com-
bination rule emerging from the London theory of dispersion interactions
when applied to a Lennard-Jones potential:

6
e g5 = 2(8:“0'0“1)(8,950'25)
B - 6
A= ap €0 05,05 + 505,00

%o (3)

We refer to this rule as Kohler’s rule, since an equivalent form was
suggested by Kohler [5]. Representing the repulsive forces between two
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Fig. 7. Experimental and theoretical thermal diffusion
factors for krypton.
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Fig. 8. Experimental and theoretical thermal diffusion
factors for xenon.

| T
6001— Neon —
M
500 {
~ [
é o e Michels etal. /87
- | o Holborn et al. (87
40 = Gibbons 787 N
- v Nicholson et al. /87
)
300 Q
\ 8 qgee®
T — ¢
200 o
v
100
0
0 100 200 300 400 500

T,K—.—

Fig. 9. Experimental and theoretical third virial coef-
ficient for neon.
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atoms by a spring model [371, we can derive a second combination rule for
the parameters of a Lcunard—Jjones potential according to

2y1/13 1/137313
12 _ (Eaaaoluz) / + (aﬂﬂalgi) /
Saﬂo-aﬂ - 2

(4)

The hard spherical core diameter of the unlike pair interaction is obviously
calculated from

1
daﬂzi (dowz+dﬂﬂ) (5)

Equations (1) to (5) fully define all pair interactions in the systems con-
sidered here. Calculations of the third virial coefficient require nonadditive
dispersion forces to be taken into account. We have convinced ourselves
that it is sufficient to use the Axilrod-Teller term [6], because all higher
terms tend to cancel each other [7]. The three-body dispersion coefficient
is calculated in the usual way from the pair interaction parameters and the
polarizabilities [34].
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Fig. 10. Experimental and theoretical third virial coef-
ficient for krypton.
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3. RESULTS FOR THE PURE GASES

We look at the following thermophysical properties: second virial coef-
ficient B, Joule-Thomson coefficient u°, viscosity #, diffusion coefficient D,
thermal diffusion factor o, and third virial coefficient C. The properties B,
u°, 1, and C for argon have already been discussed in Ref. 1. Thus only D
and a, are included for argon in this work. Also, for reasons of space, only
a selection of results is shown for helium. This gas exhibits quantum effects
at low temperatures and was included mainly to demonstrate the power of
combination rules (3), (4), and (5) under extreme conditions. Figure 1
shows deviation plots for the second virial coefficients of helium, neon,
krypton, and xenon; Fig. 2, the deviation plots for the Joule-Thomson
coefficients of neon at low and normal temperatures. Figure 3 shows the
predictions of the viscosities for neon and the correlation for the other
three gases; Fig. 4, the predictions of the diffusion coefficient. Shaded areas
in the figures represent the extimated accuracy of the data. Figures 5 to 8
show the predictions of the thermal diffusion factor. A particularly difficult
property to predict is the third virial coefficient. There is a considerable
amount of scatter in the data, but it may be concluded from Figs. 9 to 11
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Fig. 11. Experimental and theoretical third virial coef-
ficient for xenon.
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that the MSK potential is able to predict these coefficients also quite
reliably. We can conclude that, essentially although not quite, all dilute-gas
properties of the monatomic gases are described within their estimated
-experimental uncertainties by the MSK potential, with parameters either
from B+ p° data or from B+ # data.

4. RESULTS FOR THE MIXTURES

Using the combination rules, Egs. (3) to (5), we are now in the
position to predict the dilute-gas properties of the mixtures of monatomic
gases. We concentrate on the second virial coefficient and the viscosity, for
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Fig. 12. Experimental and theoretical second virial
interaction coefficient.
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which reliable data are available. Figure 12 shows typical results for the
second virial interaction coefficient for all investigated binary interactions;
Fig. 13, the analogous results for the viscosity interaction coefficient. These
results tend to establish a high degree of reliability for the combination
rules used in this work. It should be noted that the prediction capacity does
not deteriorate at large differences of the potential parameters, e.g., for
Xe-He. Clearly, since the mixing rules are exactly known for dilute-gas
mixtures, the total properties are also in satisfactory agreement with the
data. Figure 14 shows as an example the predicted viscosity of the ternary
mixture krypton—argon—neon.

5. CONCLUSIONS

We conclude that the MSK potential in connection with the universal
combination rules, Egs. (3) to (5), is a powerful tool to correlate and
extrapolate the dilute-gas properties of the monatomic gases and their
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Fig. 13. Experimental and theoretical viscosity interac-
tion coefficient.
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Fig. 14. Comparison between calculated and measured values
of the viscosity for the system krypton-argon—neon.

Table I. Values of the Parameters of the MSK-Potential Function (Polarizabilities Are Taken
' from Ref. 35)

ek Pm
(K) A)

Interaction This work  Aziz [33]  This work  Aziz [33] dfr,
He He 10.6600 10.8 297624 29673 —0.043645
Ne Ne 40.8546 42.25 3.10020 3.087 0.040348
Ar Ar 141.6116 143.224 3.74563 3.759 0.058644
Kr Kr 2129198 199.9 3.93798 4012 0.092412
Xe Xe 296.0421 282.35 4.27841 43634 0.103115
He Xe 30.6212 30.0 3.93247 3.947 0.039577
Ne Ar 64.0275 69.181 3.49118 3417 0.049374
Ne Kr 70.4675 70.7 3.63543 3.63 0.067256
Ne Xe 69.9164 722 3.88618 3.87 0.072855
Ar Kr 171.3391 167.3 3.84802 3.881 0.075828
Ar Xe 191.2239 188.63 4.04362 4.0668 0.081713

Kr Xe 245.7570 233.48 4.11777 4.174 0.097758
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mixtures. In Table I we finally summarize the binary interaction
parameters obtained in this work. It can be seen that they are reasonably
close to those values that have been established by much more involved
theoretical and experimental efforts. Clearly, fitting parameters of a simple
potential to gas data alone will not normally yield a potential that can also
be used for the liquid state. In Ref. 1 we have shown that the MSK is useful
for the whole thermodynamic surface for argon. In fact the potential
parameters for argon are particularly close to the correct ones. For the
other fluids fine-tuning by the use of liquid-state data will be required to
obtain parameters which are valid in the whole-state surface.
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